Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38668497

ABSTRACT

Particulate matter of size ≤ 2.5 µm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.

2.
Foods ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254538

ABSTRACT

Water boiling under atmospheric pressure (CAP) and water boiling under high pressure (CHP) are two popular domestic cooking methods for Chinese porridge making. In this study, we aimed to evaluate the effects of these two methods on the phenolic acid composition, antioxidant activity, and starch digestibility of triticale porridges. The contents of total free and total bound phenolic acids in the CHP sample were 1.3 and 1.6 times higher than those in the CAP counterpart, respectively, although the DPPH and ABTS values of these two samples were comparable. CAP induced more small pieces of starch than CHP, and the gelatinization enthalpy was 19% higher in the CHP sample than that in the CAP. Both cooking methods increased the starch digestibility, while the CHP sample (58.84) showed a lower GI than the CAP (61.52). These results may promote the application of triticale in health-promoting staple foods.

3.
Plant Physiol Biochem ; 196: 328-338, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36739840

ABSTRACT

Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation. Autophagy plays a central role in N recycling and holds potential to improve N utilization, and many AuTophaGy-related genes (ATGs) are involved in the autophagy process. Here, CsATG3a was identified from Camellia sinensis, and the functions involved in N utilization was characterized in arabidopsis (Arabidopsis thaliana). The transcript level of CsATG3a in tea leaves increases with their maturity. Relative to the wild type (WT) arabidopsis, two CsATG3a-overexpressing (CsATG3a-OE) lines exhibited improved vegetative growth, delayed reproductive stage, and upregulated expression of AtATGs (AtATG3, AtATG5 and AtATG8b) in a low N (LN) hydroponic condition. The expression levels of AtNRT1.1, AtNRT2.1, AtNRT2.2, AtAMT1.1 and AtAMT1.3 for N uptake and transport in roots were all significantly higher in CsATG3a-OE lines compared with those in the WT under LN. Meanwhile, the overexpression of CsATG3a in arabidopsis also increased N and dry matter allocation into both rosette leaves and roots under LN. Additionally, compared with WT, improved HI (harvest index), NHI (N harvest index), NUtE (N utilization efficiency) and NUE (N use efficiency) of CsATG3a-OE lines were further confirmed in a low-N soil cultured experiment. Together, these results concluded that CsATG3a is involved in N recycling and enhances tolerance to LN, indicating that CsATG3a holds potential promise to improve NUE in tea plant.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Nitrogen/metabolism , Biological Transport , Tea
4.
Front Plant Sci ; 13: 880095, 2022.
Article in English | MEDLINE | ID: mdl-35620698

ABSTRACT

For tea plants, nitrogen (N) is a foundational element and large quantities of N are required during periods of roundly vigorous growth. However, the fluctuation of N in the tea garden could not always meet the dynamic demand of the tea plants. Autophagy, an intracellular degradation process for materials recycling in eukaryotes, plays an important role in nutrient remobilization upon stressful conditions and leaf senescence. Studies have proven that numerous autophagy-related genes (ATGs) are involved in N utilization efficiency in Arabidopsis thaliana and other species. Here, we identified an ATG gene, CsATG101, and characterized the potential functions in response to N in A. thaliana. The expression patterns of CsATG101 in four categories of aging gradient leaves among 24 tea cultivars indicated that autophagy mainly occurred in mature leaves at a relatively high level. Further, the in planta heterologous expression of CsATG101 in A. thaliana was employed to investigate the response of CsATG101 to low N stress. The results illustrated a delayed transition from vegetative to reproductive growth under normal N conditions, while premature senescence under N deficient conditions in transgenic plants vs. the wild type. The expression profiles of 12 AtATGs confirmed the autophagy process, especially in mature leaves of transgenic plants. Also, the relatively high expression levels for AtAAP1, AtLHT1, AtGLN1;1, and AtNIA1 in mature leaves illustrated that the mature leaves act as the source leaves in transgenic plants. Altogether, the findings demonstrated that CsATG101 is a candidate gene for improving annual fresh tea leaves yield under both deficient and sufficient N conditions via the autophagy process.

5.
Chemosphere ; 291(Pt 1): 132721, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34743869

ABSTRACT

Biochar has been widely recognized as an environmentally efficient adsorbent for removing heavy metals. However, considering the weak adsorption performance of the original biochar to the oxygen-containing anion, the adsorption of vanadium by biochar has rarely been investigated. This study proposes that H3PO4 activated biochar made from an invasive plant species growing near mines is a novel material to be investigated for V(V) recovery and reuse. As a noxious, invasive plant, Lantana camara L. (LC) has become widely naturalized around the world. Biochar was prepared from LC by pyrolysis at different conditions (200 °C, 350 °C, 500 °C, and 650 °C). The adsorption effect of biochar with and without P pretreatment on V(V) in aqueous solution was compared. The results show that biochar prepared from LC impregnated with H3PO4 (MLBC) had the highest adsorption capacity at 500 °C, and the maximal adsorption capacity fitted by Langmuir model was 77.38 mg g-1, which was considerably higher than that of untreated biochar (LBC, 5.89 mg g-1). The adsorption procedure was substantially fitted by the Langmuir isotherm and the pseudo-second-order kinetic. Additionally, the interaction of V(V) on MLBC is pH-dependent, and slightly acidic conditions are more favorable for adsorption. The characterization results indicated that electrostatic interaction, complexation reaction, and redox reaction were the primary mechanisms. After three cycles of adsorption, the final maximal adsorption capacity of MLBC remained at 76.03% of that of the virgin sample, demonstrating that MLBC had a recyclable capability to eliminate and restore V(V) from aqueous solutions.


Subject(s)
Lantana , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Water Pollutants, Chemical/analysis
6.
Front Public Health ; 9: 788370, 2021.
Article in English | MEDLINE | ID: mdl-34900925

ABSTRACT

Coronavirus Disease 2019 (COVID-19) restrictions, including national lockdown, social distancing, compulsory quarantine, and organizational measures of remote working, are imposed in many countries and organizations to combat the coronavirus. The various restrictions have caused different impacts on the employees' mental health worldwide. The purpose of this mini-review is to investigate the impact of COVID-19 restrictions on employees' mental health across the world. We searched articles in Web of Science and Google Scholar, selecting literature focusing on employees' mental health conditions under COVID-19 restrictions. The findings reveal that the psychological impacts of teleworking are associated with employees' various perceptions of its pros and cons. The national lockdown, quarantine, and resuming to work can cause mild to severe mental health issues, whereas the capability to practice social distancing is positively related to employees' mental health. Generally, employees in developed countries have experienced the same negative and positive impacts on mental health, whereas, in developing countries, employees have reported a more negative effect of the restrictions. One explanation is that the unevenly distributed mental health resources and assistances in developed and developing countries.


Subject(s)
COVID-19 , Communicable Disease Control , Humans , Mental Health , Quarantine , SARS-CoV-2
7.
Int J Mol Sci ; 21(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987963

ABSTRACT

Nitrogen (N) is a macroelement with an indispensable role in the growth and development of plants, and tea plant (Camellia sinensis) is an evergreen perennial woody species with young shoots for harvest. During senescence or upon N stress, autophagy has been shown to be induced in leaves, involving a variety of autophagy-related genes (ATGs), which have not been characterized in tea plant yet. In this study, a genome-wide survey in tea plant genome identified a total of 80 Camellia Sinensis autophagy-related genes, CsATGs. The expression of CsATG8s in the tea plant showed an obvious increase from S1 (stage 1) to S4 (stage 4), especially for CsATG8e. The expression levels of AtATGs (Arabidopsis thaliana) and genes involved in N transport and assimilation were greatly improved in CsATG8e-overexpressed Arabidopsis. Compared with wild type, the overexpression plants showed earlier bolting, an increase in amino N content, as well as a decrease in biomass and the levels of N, phosphorus and potassium. However, the N level was found significantly higher in APER (aerial part excluding rosette) in the overexpression plants relative to wild type. All these results demonstrated a convincing function of CsATG8e in N remobilization and plant development, indicating CsATG8e as a potential gene for modifying plant nutrient utilization.


Subject(s)
Autophagy-Related Protein 8 Family , Camellia sinensis , Nitrogen/metabolism , Plant Proteins , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Opt Express ; 28(14): 20598-20608, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680116

ABSTRACT

This study experimentally demonstrates and theoretically analyzes the enhancement of terahertz (THz) waves from two-color laser-field (consisting of a near-infrared femtosecond laser and its second-harmonic wave) induced air plasma using an additional 800 nm femtosecond laser. The experiments revealed that the additional 800 nm laser increased the THz energy up to 22 times. To understand the enhancement mechanism and reveal the maximum enhancement conditions, the effects of the 800 nm beam's polarization and energy variations of both beams on the THz amplification were studied. With the increase in the 800 nm pulse energy, the THz yield initially increases, and then decreases after reaching an inflection point. The THz increase rate continues to increase with the decrease in energy of the near-infrared two-color fields. The 800 nm beam could efficiently modulate the THz spectral energy distribution by increasing the high-frequency components, while decreasing the low-frequency components.

SELECTION OF CITATIONS
SEARCH DETAIL
...